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ABSTRACT

Research into intelligent systems and intelligent control is
burgeoning.   However, there is no consensus on how to define or
measure an intelligent system.   This lack of rigor hinders the
ability to measure progress in the field and to compare different
systems’ capabilities.   We discuss some of the challenges and
issues in defining performance metrics for intelligent systems and
issue a call to action to participants in the Performance Metrics for
Intelligent Systems Workshop to define practical metrics that will
advance the state of the art and practice.

KEYWORDS:  performance metrics, intelligent systems,
intelligent control

1. INTRODUCTION

Intelligent systems are increasingly being
identified as solutions to many advanced
applications in manufacturing, defense, and other
domains.    Industry workshops [4] and roadmaps
[3] specifically call for intelligent control or
intelligent systems to address needs such as

• Adaptive, reconfigurable manufacturing
equipment and processes

• Self-optimizing, science-based control of
manufacturing unit processes

• “First part correct,” that is, the ability to
design and manufacture a product correctly,
the first time and every time

• Self-diagnosing and self-maintaining systems

• Tool wear and breakage monitoring

Government agencies are basing major programs
on intelligent capabilities, for example,

• The Army Experimental Unmanned Ground
Vehicle Systems (Demo III)

• Defense Advanced Research Projects Agency
(DARPA)/Army Future Combat Systems

• DARPA Mobile Autonomous Robot Software

• DARPA Software for Distributed Robotics

• DARPA Tactical Mobile Robots

• National Aeronautics and Space
Administration (NASA) spacecraft and rovers

• Department of Energy (DOE) waste
remediation robot systems

• Department of Transportation (DOT)
Intelligent Vehicle Initiative

In addition to the examples above, there are
myriad other efforts in academia, industry, and
government labs of work referred to as
“intelligent systems.”    Despite the common use
of “intelligent system” and “intelligent control,”
there is no uniform definition for either term.
Generally, they are characterized by having one or
more of the following traits [1]:

• Adaptive

• Capable of learning

• “Does the right thing” or “acts appropriately”

• Non-linear

• Autonomous symbol interpretation

• Goal-oriented

• Knowledge-based

These terms are ambiguous and qualitative.
The Intelligent Systems Division of the National
Institute of Standards and Technology has



launched an initiative to better define what an
intelligent system is and how to measure its
performance.  The mission of the Intelligent
Systems Division, one of five divisions in the
Manufacturing Engineering Laboratory, is “to
develop the measurements and standards
infrastructure needed for the application of
intelligent systems by manufacturing industries
and government agencies.”

We are working with various industry groups
and government agencies to tackle the issue of
intelligent system performance.   The
Performance Metrics for Intelligent Systems
Workshop is a foundational step, which brings
together a multi-disciplinary community to help
define the highest priority areas to concentrate on,
having the highest payoff.

2. THE CHALLENGE OF DEFINING AND

MEASURING MACHINE INTELLIGENCE

       Researchers have been pursuing forms of
machine intelligence for several decades.     There
have been many areas of focus, such as natural
language understanding, expert systems to aid
diagnoses, and decision-making tools for financial
systems.  Closer to our domain of interest, much
effort has been focused on defining intelligent
control as a discipline, but even so, there are no

quantitative measures.
Beginning with the efforts of Fu [1] and

Saridis [3] in the seventies, there have been
numerous conferences and workshops aimed at
the topic of intelligent control.      Nevertheless,
the field remains fragmented due to its
multidisciplinary nature.  As noted in the first
Symposium on Intelligent Control in 1985,
intelligent control was proclaimed a theoretical
domain, in which control theory, AI, and
operations research intersected (Fig. 1 from [6]).

The definition of an intelligent system may be
considered broader than that of intelligent control.
As a “system,” there may be more constituent
parts, such as perception, world modeling, or
value judgement.  Yet more disciplines are
brought into the picture.   Examples of these
include data representation, image processing, and
decision theory.

Given the multi-disciplinary nature of the
systems we are concerned with, it is clear that
defining the scope and performance of these
systems is a challenge.   Terminology is one of
the first hurdles that must be overcome.  Different
disciplines ascribe different definitions to the
same words.  For example, “complexity” may
refer to non-linear systems in one field and to
computational resources needed in another.

It is very difficult, if not impossible to
currently evaluate research into intelligent
systems.   Since there are no quantitative metrics,
intercomparisons of results are not generally
possible.   Sponsors are not able to adequately
judge whether research results meet their
requirements. Potential users have no impartial
evaluation reports, a la “Consumer Reports,” of
intelligent systems, techniques, and tools. In
general, the lack of metrics slows progress.
There is a proliferation of data specific algorithms
and task-specific solutions.

One of the biggest costs paid is the duplication
of effort. New programs may be unable to have a
firm definition of past accomplishments, hence
they may fund work that repeats previous
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Figure 1: Intelligent Control as of 1985



research.  Research teams cannot leverage prior
existing work from other institutions and tend to
have to reinvent the wheel by building all of their
system’s components from scratch. They are
burdened with having to spend effort in building
components that are not part of their research
focus, instead of being able to leverage existing
“best of class” solutions and focussing on their
interests.

Another negative impact, from the sponsor's
viewpoint, is the lack of predictive ability in
assessing new applications.  Without objective
performance evaluation metrics and an
understanding of capabilities and limitations, it is
difficult or impossible to assess claims of
competing approaches in formulating new
projects and programs.  This leads to
inefficiencies and failures that could be avoided if
we had the measurement tools that we need.

3. ISSUES IN MEASURING PERFORMANCE

Numerous questions must be answered when
considering how to define the performance of
these intelligent systems.   We will present a few
questions. Many more will arise as we delve into
the matter more closely.

• Should we measure only the external behavior
of a system?  Is that the only aspect that can
feasibly be measured?  Or, is there value in
decomposing a system into components and
measuring their individual capabilities?
Examples would be measuring the path
planning algorithms in isolation from the
perception and other control subsystems.

• How generic does the measure of a system’s
intelligence have to be?  Should we strive for
general intelligence metrics that are domain-
independent or are we better off focussing on
application and domain-specific metrics?  Are
domain-independent metrics even
meaningful?

• How do we factor in “body intelligence,” the
mechanical capabilities of a system as
opposed to the control capabilities, when
assessing the performance of a system?  If we
have a mobile robot, some of its abilities to
achieve its stated goal (e.g., traverse a rubble
pile to find survivors) can be attributed to its
mechanical properties rather than its software
intelligence.

• Are testbeds a viable measure of performance,
or do they invite “gaming,” that is, encourage
solutions that are tailored to performing well
in the testbed?  If we don’t have testbeds, how
can we achieve reproducible measures of
performance?

4. INITIAL OBSERVATIONS

One of the complicating factors in discussing
intelligent systems is the use of the word
“intelligence.”  It is freighted with significance
and analogies to human or biological intelligence
naturally arise.   The quest for standard, uniform
measures of intelligence in biological systems
remains a subject of controversy.   Therefore, we
would advocate avoiding the temptation to spend
too much time striving for performance measures
that are based on human or higher level biological
systems.

Observing that we are dealing with multi-
disciplinary technologies and multiple application
domains, we should expect that no single, unique
measure of performance is feasible.   Therefore,
no single overarching and generic intelligence test
will suffice.   We need to strive for the right
granularity of metrics.

We must be prepared to attack the problem on
multiple fronts.   It probably won’t suffice to have
just a theoretical investigation or an experimental
one.   Research must proceed on the theory as
well as on gathering experimental data.

One of the key attributes of intelligent systems
is its multi-disciplinarity.  This poses a challenge,
but also an opportunity.   We can come together
from a variety of disciplines and form a new



community in which we share our expertise.   We
must have dialog and information exchange
amongst ourselves in order to synthesize the best
results from the different fields that contribute
towards intelligent systems research.

That is the purpose of this workshop and the
reason for the diversity of the presentations that
you will hear.

5. CALL TO ACTION

The challenge is thus to define performance
measures for new and evolving intelligent systems
technologies that can greatly improve industrial
productivity and advance government mission
objectives.    We must work together to build a
technical foundation for measuring performance.
This includes agreeing on the domains to
investigate and a common set of terminology.
We must develop theoretical foundations,
methodologies, and supporting infrastructure for
achieving our goals.   Ultimately, measures must
be developed that are practical, unambiguous,
easy to use and  widely deployable.   We must
simultaneously focus on attainable goals and
strategies for both near-term and long-term
measures of performance, as our understanding of
them and the capabilities of the systems
themselves evolve.    Researchers, industry, and
government will benefit from practical solutions
they can readily apply, not from philosophical
ones.
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ABSTRACT
System intelligence can be measured experimentally either through
benchmark tests, or theoretically through the formal analysis of
system software architecture and hardware configurations. The latter
approach is pursued here, since it serves directly as the criteria for
designing and engineering intelligent systems in a directed manner,
rather than by trial and error. To this end, a structure of problem
solving and learning of machine is proposed. Once a machine is
represented with the structure, the intelligence can be measured via
transforming it into an equivalent linguistic structure. A simple
example is also provided.

KEYWORDS: measure of system intelligence, measure by
linguistic equivalence, machine description language

1. INTRODUCTION
The intelligence of systems is emergent when the systems are
able to accomplish loosely defined but complex tasks in an
unstructured and uncertain environment. The intelligence can
be manifested by the capability of systems to autonomously
synthesize goal-oriented behaviors in adaption errors, faults,
and unexpected events through the real-time connection of
sensing and action. However, we still do not have a
satisfactory quantitative way to characterize the “intelligence”
of systems. There are many kinds of intelligent systems in
various fields. The adjective ‘intelligent’ is quite widely used
to describe their systems developed by many system engineers
and companies. One developer may say that his/her system is
more intelligent than the others, but it can happen that another
claims the same thing. In this case, who can say one is more
intelligent than the others? One must have a kind of measure
of intelligence for systems or machines in order to answer this
question. In this sense, it is worthwhile to provide a measure
on how intelligent a machine is.

Many intelligent system techniques have been developed
and studied so far, but only a few studies have been done on
‘how to measure intelligence of systems.’ J. S. Albus
introduced the theory of intelligence in an engineering
viewpoint [1]. G. Zames initiated an effort for defining such an
index as approximate a measure of the “task” and
“satisfactory” performances an “intelligent controller” could

achieve versus those that a classical controller could achieve
[2]. The challenge involves characterization of performance in
unknown environments, learning, controller and task
complexity, and associated tradeoffs. E. C. Chalfant and S.
Lee suggested an engineering perspective [3]. They thought
that one can represent all tasks of a machine in the form of
graphs and find an equivalent language for the graphs. Since a
language consists of grammar and vocabulary, the descriptive
power of a machine can be represented by the grammar and
the vocabulary. Bien, et al. [4][5] proposed a couple of
methods to measure how much a machine is intelligent; they
considered the questions from the ontological (functional) and
phenomenological (behavioral) definitions on intelligent
machine.

Establishing the measure of system intelligence should
not only be able to turn the intelligent system into a formal
academic discipline but also provide a means of designing
better and more powerful intelligent systems in practice. The
measure of intelligence of a system or, more precisely, a
constructed system with autonomy should take into
consideration various aspects of intelligence ranging from
perception, understanding, and problem solving to
generalization and learning from experience. A. Meystel
proposed a vector of system intelligence as a collection of
features representing intelligent functions of a system. The list
of such features can be very comprehensive indeed. However,
formulating the measure of system intelligence based on such
a vector may not necessarily represent the essence of system
intelligence. The functional features describing the aspect of
intelligent behaviors may obscure the existing internal engine
by which intelligent behaviors are generated.

To begin with, the following questions are raised for
answer prior to the definition of the metric of system
intelligence:

(a) Should the intelligence measure be goal-dependent or
goal-independent?

(b) Should the intelligence measure be time-varying or
time-invariant?

(c) Should the intelligence measure be resource-
dependent or resource-independent?

For (a ), it raises a question whether there exists a
universal measure of system intelligence such that the
intelligence of systems can be compared independently of the



given goals. A goal-independent measure may be more
difficult to define, if not impossible, and more controversial.  A
goal-dependent measure, however abstract the goal may be,
can allow clear comparison among the systems of different
architecture but with the same goal. For instance, for the latter
case, intelligence can be represented as how efficiently, and
how optimally a system reaches the given goal by itself, i.e.,
the power of automatically solving problems defined as the
discrepancy between the goal and the current state.

For (b), it represents whether the intelligence measure of a
system should solely be based on problem-solving capability
at time t or it should contain the potential increase of problem-
solving capability in the future based on learning. Both are
necessary. But, it is better to define the two separately before
integrating them together in one measure.

For (c ), it raises an issue whether the resources required
for building systems and system operation should play a role
for defining the measure of intelligence. As mentioned above,
the efficiency in problem solving should be included in the
measure: for instance, the time and energy required to reach a
solution should be taken into consideration together with the
optimality of the solution. But, it is not clear whether we
should or should not include the cost of building a system.

Section 2 provides definitions of engineering metric of
system intelligence based on the above three questions. In
Section 3, machine intelligence structure is proposed, and an
equivalent linguistic structure follows in Section 4. Section 5
shows an example with a robotic arm. Finally, Section 6
concludes the paper.

2. DEFINITION OF ENGINEERING METRIC
OF SYSTEM INTELLIGENCE
System intelligence can be measured under considering
various points of views described in the previous section. An
approach in engineering perspective is pursued here with goal-
oriented , time-dependent , and resource-dependent definition
of engineering metric of system intelligence. We define
machine intelligence quotient (MIQ) in the following way.

The measure of system intelligence as problem-solving
capability at time t for the given goal set g, denoted by MIQ(g,
t), is defined by the capability of solving problems toward the
given goal set where the capability can be measured by the
scope of constraints (environmental variations), together with
the time and resources required, under which the system
succeeds in reaching the given goals.

The measure of self-improvement of system intelligence
as learning capability with respect to time t, denoted by
dMIQ(g, t), can be defined by the rate of increasing MIQ(g, t)
with respect to time based on learning from experience.
Capability of learning in the time duration of (t1, t2) is
represented by the integration of dMIQ(g, t) between t1 and t2.

Now, the total measure of system intelligence, tMIQ, is
defined by

∫+=
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Let tmax be the time when the maximum of tMIQ is
obtained. The learning rate is then defined by
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Note that the universal measure of system intelligence,
uMIQ, may be defined in terms of integration of MIQ with
respect to goal, i.e.,
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where G is the set of all goals.

As mentioned above, resources required for the machine
is combined into the machine intelligence, MIQ to resource
ratio, rMIQ , can be represented by

resourcestMIQrMIQ = .  (3)

3. MACHINE INTELLIGENCE
As described in the previous section, machine intelligence can
be measured once MIQ(g, t) and dMIQ(g, t) are defined. We
now formulate the way of defining two quantities, MIQ
(problem-solving capability) and dMIQ (rate of increasing
MIQ based on learning capability).

The first step of problem solving is to understand the
situation and define what are the problems to solve. This
requires identifying the gap between the goal and current
states as well as recognizing the constraints and opportunities
imposed by the environment. Then follows the planning or
decision-making to reduce the gap under constraints. The first
step requires perception and understanding, whereas the
second step requires action and planning. Perception and
action can be represented as logical sensor and actuator
systems, respectively, in a form of hierarchical graphs of
declarative knowledge components. Understanding can be
represented as the connection of what have been perceived to
system internal knowledge. Planning can be represented as the
projection of what have been understood to the logical
actuator system. The mechanism of these connections can be
rule-based. The overall structure of problem solving
mechanism is represented in Figure 1 with solid-line
connections.

Regarding the learning capability, a higher level of
consciousness that monitors these activities of understanding
and planning may exist in the form of thinking (a self-driven
function that monitors understanding and planning in the form



of questioning, virtual manipulation). In case that the machine
cannot understand an obtained data from logical sensors by
perception, the consciousness/emotion may adjust the
knowledge to allow the obtained data for understanding, i.e.,
identifying the gap between the goal and current states  as well
as recognizing the constraints and opportunities imposed by
the environment. In addition, when an action already taken is
decided to be further improved, the consciousness/emotion
may fix its knowledge to give a better plan later on. The
structure of learning mechanism is also shown in Figure 1
with dotted-line connection.

Understanding 

Consciousness 
/Emotion Goal  Knowledge 

Perception

Logical  
actuators Planning 

Logical  
sensors 

Action  

: Problem solving structure

: Learning structure  

Figure 1. Structure of Machine Intelligence

The logical sensors and actuators as well as knowledge
and constraint can be represented by an equivalent linguistic
form. The same is true for representing the connection and
projection associated with understanding and planning. If the
functions of a system embedded in its hardware and software
can be represented as a linguistic equivalent, based on the
above observation, the MIQ and dMIQ of the system may be
defined in the equivalent linguistic space. Thus, for a given
machine to measure its intelligence, transforming the machine
itself into this structure of problem solving and learning is first
conducted, and then transforming it into the equivalent
linguistic structure is to be done, which is discussed in the
next section.

4. MEASURE BY LINGUISTIC EQUIVALENCE
Transforming system architecture into an equivalent formal
language structure, a consistent measure of machine
intelligence associated with the corresponding formal
language can be obtained.

Any generic language used to build models representing
diverse architectures must contain mechanisms to implement
the features of all these architectures. For example, the parallel
structure of the subsumption model requires parallelism in the
language. At the other extreme, the functionality of a
centralized planner must also be representable. If the structure
of the model differs, we must be prepared to clearly determine
equivalent operation.

4.1 The Machine Description Language
The basic unit of the Machine Description Language (MDL) is
a behavior. The behavior nit is analogous to a sentence or
statement constructed according to grammatical rules. There
statements are conglomerated to form a meaningful system.
The paper defines the grammatical rules of syntax of the
Machine Description Language. Generating the semantics of
an entire system is analogous to writing a program in a given
system.

An MDL model has a hierarchical layered architecture
composed of a number of various behaviors, some simple, and
some complex. The simplest possible behavior is based on
direct triggering by a single binary sensor which elicits a
simple actuator response. For example, an on/off contact
switch can trigger a behavior called “bump ” which causes a
short reverse movement combined with a turn.

Behavior modules are collected in groups which
implement a complete autonomous task, such as obstacle
detection. The collection of behaviors is called a wrapped
behavior. The linguistic analogy is a paragraph of subroutine
which encapsulates a single topic or function.

The composite wrapped behavior collectively implements
some useful autonomous task. For example, a group of bump
behaviors based on different contact sensors can be wrapped
to form an obstacle rerouting wrapped behavior based on
direct contact. If ultrasonic range detectors are added, new
strands can be added to the composite object rerouting
behavior, and the improved behavior them before bumping
them. The old bump behaviors are kept as backups.

4.2 Analytical Measures with MDL
The performance of the system described here can be
measured using traditional back box empirical techniques. For
example, we can time its performance in executing a
prescribed task. Alternatively, structural (linguistic) analyses
of the system can be used to determine theoretical bounds on
performance independent of implementational efficiency.

Structural analysis begins with identification of
measurable quantities and their effects on performance. Many
structural features can be measured; each contributes to the
emergent intelligence of the completed system in a different
way.

4.2.1 Behavior Attributes

We first consider measurable attributes of a behavior. Some of
the measurable structural features are:

Strand Count and Strand Segment Count : A behavior has some
number of strands (i.e., sensor to actuator information path)
associated with it. Strands are regarded as instantaneous
communication links for the purpose of measurement. The
information packet propagation time between nodes, trigger,



and taps is zero. The number and thickness of strands in a
single behavior provides a measure of the resolution of
sensory information, trigger situation discernability, and the
dexterity or controllability of the actuator system. More
fundamentally, strand segment count and thickness together
measure the information transport capacity of the behavior.

Node Count: Node count captures the complexity of the sensor
and actuator trees of a behavior. The node count is taken as the
sum of nodes and taps for both sensor and actuator trees.

Trigger Propagation Time: Each trigger has three measurable
attributes indicating the dimensionality of the input
(parameters of the sensed situation), the dimensionality of the
output (parameters of the desired response, based on the
sensed situation) and the propagation time of the information,
i.e., the delay between a sensed situation and the resultant
response.

Node Propagation Time: The delay an information packet
encounters between the time it enters a tap node, fusion node,
or arbitration node and the time it (or the effects of a change in
the information) exits the node, is termed node propagation
time. It represents the processing time required to fuse
information, to arbitrate competing controls, or to extract or
combine information.

Strand Propagation time : The strand propagation time id the
time for an information packet to travel from the sensor at the
beginning of the strand to the actuator at the end of the strand.

Behavior Response Time : The response time of a behavior is
the sum of all information propagation timers along the
longest path between raw sensor input and raw actuator
output. The path may include nodes from other behaviors but
will include only one trigger propagation time. This differ
from the propagation time of the longest strand in that the
strand propagation time is measured from tap to tap, whereas
the behavior response time is measured from raw sensor input
to raw actuator output. Behavior response time is computed
as:

∑ += )(max τα i
i

B        (4)

where

B : behavior response time

iα : node propagation time for node i

τ : trigger propagation time

Behavior response time can also be measured empirically, as
long as the response can be isolated from the response of all
other behaviors.

4.2.2 System Attributes

Next we consider attributes of the combined system:

Trigger of Behavior Count: The number of separate triggers
(which is equivalent to the number of behavior modules)

indicates the number of separate situations and corresponding
responses, which the system can elicit, based on its sensory
information. The total number of triggers in the entire system
is and indication of complexity of the system and
sophistication of response (assuming a well-designed system).

Strand Distribution: Strands which rely on many lower level
strands provide more abstract, goal-directed, and strategic
stimulus-response relationships, whereas the lower level
strands provide greater reactivity and quicker response. The
distribution of the strands between these extremes indicates
the tendency for the system to generate behavior based on
reflexes or impulses vs. goal-seeking behavior. One measure
of this characteristic is the distribution of behavior
propagation times. Standard statistical measures such as mean
and median behavior propagation times, standard deviation,
minimum and maximum propagation, describe the
distribution. A median propagation time biased toward the
minimum indicates a more quickly responsive and reflexive
system whereas a bias toward the maximum indicated a
deliberative system.

Layering Depth: Another measure of deliberativeness is the
layering depth. The layering depth can be measured as the
number of trees belonging to different behaviors which an
information packet must traverse to reach the raw motors from
the trigger. Because each group of wrapped behaviors
comprises an autonomous set of behaviors, the layering depth
or maximum depth of wrappers indicated the sophistication of
autonomy. A system, which is more deeply wrapped, may
indicate that it can perform more complex tasks autonomously.
Each behavior added to a wrapped behavior indicates that
some environmental situation can arise which s not handled
optimally by the wrapped behavior by itself. If a wrapped
behavior s itself wrapped along with new behaviors, the newly
wrapped set handles all the environmental stimuli of the
original wrapper plus all the situations detected by the new
behviors.

MIQ: The MIQ  (Machine Intelligence Quotient) is then
defined as the product of the complexity of tasks the system
can handle and the performance in task execution. This
measure embodies the tradeoff between reflexivity (speed) and
deliberativity (complexity). Task complexity is dependent both
on the complexity and quantity of the tree structures. The
complexity of tasks can be measured using the system
attributes listed above, namely, trigger count, strand
distribution, layering depth, strand count, and node count. We
combine these as a weighted sum:

κσλδγ κσλδγ wwwww ++++=T       (5)

where

T : Task complexity ability

γ : Trigger count

δ : Average strand propagation time overall machine



λ : Layering depth

σ : Total strand count in machine

κ : Total node count in machine

κσλδγ wwwww ,,,, : Respective weights

Performance in task execution is derived from the collective
performance of behaviors. This can be computed as the
weighted sum of behavior response time and inverse average
strand propagation time (since speed increase as strand length
decreases ):

δδwwB += BE       (6)

MIQ is then

ET ⋅=MIQ     (7)

Resource: Machine “resource” is a measure of implementation
requirements based on the architectural design of the machine.
The resource is defined as the product of cost and volume. We
compute the resource based on the number of processors and
communication links required to implement the system
directly in a parallel architecture. Processors are expensive
while communication links are cheap. However,
communication links can become numerous and occupy a
large part of the volume of a machine. These costs and
volumes are likely to change with new technology. The cost of
the system is the sum of the costs of the processors (trigger,
nodes, and taps) required. We assume one simple processor
per trigger, node, or tap. We denote this as

πγ πγ CC +=C      (8)

where

C : cost of machine

π : node count

πγ CC , : cost of trigger and node processors

The volume of the system is computed the same way:

πγ πγ VV +=V      (9)

Then resource is

CV=R   (10)

and the rMIQ is

RMIQrMIQ =       (11)

5. ENGINEERING CASE STUDY
A simple grasp controller based on the subsumption style of
robot control uses a gripper beam and finger contacts as
sensors as shown in Figure 2.

  

robot 
body

contact 
switch

gripper  
beam

Figure 2. A Simple Robot Arm
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Figure 3. Subsumption Network

Figure 3 illustrates the simple subsumption network
which generates the behavior of the robot. The extend arm
behavior is always extends the arm (we ignore the condition of
a fully extended arm). As soon as the gripper beam is broken,
the sensor causes the “close grippers” behavior to trigger. The
white motor node simultaneously inhibits the arm from
extending with an inhibition node and activates the gripper
closure actuator, causing the gripper to begin closing. (The
gray nodes are taps – in this example they are motor taps or
arbitrators.) When the grippers contact the object, the contact
switch is closed, causing the “stop closing gripper, retract
arm” behavior to trigger. The white node on the output of this
behavior is a sequential node – first the gripper closure motor
strand is inhibited, causing the gripper to first stop squeezing.
Finally, the behavior subsumes the output of the “extend arm”
behavior using a subsumption node, causing the arm to retract.

The MIQ and dMIQ of this system is easy to compute. All
weights are set to one to simplify the example. There are three
behaviors. The “extend arm” behavior is a trigger and a raw
motor node (the tap nodes belong to the /”close gripper” and
“stop gripper…” behaviors). The behavior response time for
“extend arm” is therefore 1 + 1 = 2. There is one strand in this
behavior. The “close grippers” behavior has one raw sensor
node, one motor node tree node, and either one raw motor
node or one motor tap; both of the two strands are the same
length, so we may use either. The response time is 3 + 1 = 4.
The “stop closing…” behavior similarly has a response time of
4 and a strand count of two. The mean behavior response or
propagation time is (2 + 4 + 4) / 3, or 3.333. Layering depth is
two, and system strand count is 5. Average strand propagation
time over the entire system is (3 + 3 +3 + 3 + 1) / 5, or 2.6.
There are nine nodes and nine strand segments in the entire
system.

Based on these numbers, task complexity ability is 3 + 2.6
+ 2 + 5 + 9 = 21.6. Remember, this number means little except
as a comparative measure. Performance is 3.333 + 0.385 =
3.718. MIQ is then roughly 21.6 + 3.7 = 25.3. If we assume



costs and volume of one, then cost and volume are both 9 + 9
= 18. Resource is (18)(18) = 324, and the rMIQ is 21.6/324 =
0.0667

6. CONCLUSION
We have presented three important issues, which should be
considered when measuring machine intelligence, and
introduced the structure of machine intelligence, which shows
the internal mechanism of machine taking into account the
three issues. Any machine can be represented by the proposed
structure and the structure can be transformed into an
equivalent linguistic structure so that one may define the
metric of the machine intelligence in an analytical way.

In this paper, an equivalent linguistic structure has been
proposed. It needs to be further developed to present linguistic
structure of machine intelligence for both MIQ and dMIQ with
respect to goals and time.

The formulation on MIQ, dMIQ, and rMIQ  in Section 2
will be a good guide for defining machine intelligence since
its clearness in the sense of goal-dependency, time-
varyingness, and resource-dependency.
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ABSTRACT  

There are now so many architectures for intelligent systems: 
deliberative planning vs. reactive acting, behavioral subsuming 
vs. hierarchical structuring, machine learning vs. logic reasoning, 
and symbolic representation vs. procedural knowledge. The 
arguments from all schools are all based on how natural systems 
(i.e., biologically inspired, from basic forms of life to high level 
intelligence) work by taking the parts that support their 
architectures. In this paper, we take an engineering point of view, 
i.e., by using requirements specification and system verification 
as the measurement tool. Since most intelligent systems are real-
time dynamic systems (all lives are), requirements specification 
should be able to represent timed properties. We have developed 
timed ∀-automata that fit to this purpose. We will present this 
formal specification, examples for specifying requirements and a 
general procedure for verification.  

KEYWORDS:  formal specification, constraint-based 
requirements, system verification 

1. INTRODUCTION AND MOTIVATION 
Over the last half a century, intelligent systems have 
become more and more important to human society, from 
everyday life to exploration adventures.  However, unlike 
most other engineering fields, there has been little effort 
towards developing sound and deep foundations for 
quantitatively measurement and understanding such 
systems. The lack of measurement and understanding leads 
to unsatisfactory behavior or even potential danger for 
customers. The systems may not achieve desired 
performance in certain environments, or, the systems may 
even result in catastrophe in life-critical circumstances. 
      Many researchers have suggested measures of 
performance for intelligent systems, such as the Turing 
Test [12], Newell’s expanded list [9,10] and Albus’s 
definition of intelligence [4]. However, most of these 
measures are not based on formal quantitative metrics. 
There are also efforts on comparing performance on pre-
defined tasks, such as a soccer competition [11]. However, 

these methods are domain specific therefore hard to apply 
to general cases. We advocate formal methods for 
specifying performance requirements of intelligent 
systems. Much research has been done on formal methods 
(http://archive.comlab.ox.ac.uk/formal-methods.html) over 
the last twenty years. In this paper, we explore one of the 
approaches, namely, using timed ∀-automata for 
specifying performance requirements.  
      The timed ∀-automata model was developed in [13, 
17] as an extension of discrete time ∀-automata [8] to 
continuous time, annotations with real-time. Timed ∀-
automata are simple yet able to represent many important 
features of dynamic systems such as safety, stability, 
reachability and real-time response. In the rest of this 
paper, we introduce the formal definition of timed ∀-
automata first, then present examples of timed ∀-automata 
for representing performance metrics, and finally describe 
a general verification procedure for this type of 
requirements specification. 
 

2. TIMED ∀-AUTOMATA 
In general, there are two uses of automata: 1. to describe 
computations, such as input/output state automata, and 2. 
to characterize a set of sequences, such as regular 
grammars/languages. Examples of the first category are 
mostly deterministic and examples of the second category 
are mostly non-deterministic. However, all the original 
automata work is based on discrete time steps/sequences. 
Approaches to extending automata to continuous time have 
been explored in hybrid systems community over the last 
decades [1,2,7]. The timed ∀-automata model that we 
developed belongs to the second category, i.e., non-
deterministic finite state automata specifying behaviors 
over continuous time. The discrete time version of ∀-
automata was originally proposed as formalism for the 
specification and verification of temporal properties of 
concurrent programs [8].  



2.1. Syntax 

Syntactically, a timed ∀-automaton is defined as follows.  
 
[Definition 1] A ∀-automaton A is a quintuple (Q, R, S, e, 
c) where Q is a finite set of automaton-states, R ⊆ Q is a 
set of recurrent states and S ⊆ Q is a set of stable states. 
With each q ∈ Q, we associate an assertion e(q), which 
characterizes the entry condition under which the 
automaton may start its activity in q. With each pair q, q’ 
∈ Q, we associate an assertion c(q, q’), which 
characterizes the transition condition under which the 
automaton may move from q to q’. R and S are 
generalizations of accepting states. We denote by B = Q – 
(R ∪ S) the set of non-accepting (bad) states. Let R+ be the 
set of non-negative real numbers representing time 
durations. A timed ∀-automaton is a triple (A, T, τ) where 
A is a ∀-automaton, T ⊆ Q is a set of timed automaton-
states and τ: T ∪ {B} → R+ ∪ {∞} is a time function. 
 
      One of the engineering advantages of using automata 
as a specification language is its graphical representation. 

It is useful and illuminating to represent timed ∀-automata 
by diagrams. A timed ∀-automaton can be depicted by a 
labeled directed graph, where automaton-states are 
depicted by circle nodes and transition relations are by 
directional arcs. In addition, each automaton-state may 
have an entry arc pointing to it; each recurrent state is 
depicted by a diamond and each stable state is depicted by 
a square, inscribed within a circle. Nodes and arcs are 
labeled by assertions as follows. A node or an arc that is 
left unlabeled is considered to be labeled with true. 
Furthermore, (1) if an automaton-state q is labeled by ψ 
and its entry arc is labeled by ϕ, the entry condition e(q) is 
given by e(q) = ψ ∧ϕ; if there is no entry arc, e(q) = false, 
and (2) if arcs from q to q’ are labeled by ϕi, i = 1…n, and 
q’ is labeled by ψ, the transition condition c(q, q’) is given 
by c(q, q’) = (ϕ1 ∨…∨ϕn) ∧ψ; if there is no arc from q to 
q’, c(q, q’) = false. A T-state is denoted by a nonnegative 
real number indicating its time bound. Some examples of 
timed ∀-automata are shown in Figure 1. 

 
 
 
 
 
 
 

   
 (a)           (b)          (c)               (d) 

 
Figure 1. Examples of timed ∀-automata 
 

2.2. Semantics 
Semantically, each assertion denotes a constraint defined 
on a domain of interest. Let D be a domain of interest; D 
can be finite, discrete, or continuous, or a cross product of 
a finite number of domains. Physically, D can represent, 
for example, speeds, distances, torques, sentences, 
commands or a combination of the above. A constraint C 
defined on D is a subset of D, C ⊆ D. Physically, a 
constraint represents certain relation on a domain, such as 
a relation between external environment stimuli and an 
agent’s internal knowledge representation, or, a relation 
between internal states and actions, or, the relation 
between the current and next state. An element d in 
domain D satisfies constraint C, if and only if d ∈ C. 
      The semantics of timed ∀-automaton is defined as 
follows. Let T be a time domain, which can be continuous, 
for example, R+. First, let us define runs of ∀-automata. 
Let A = (Q, R, S, e, c) be a ∀-automaton and v: T → D be 
a function of time. A run of A over v is a function r: T →Q 
satisfying: 

1. Initiality: v(0) ∈ e(r(0)); 
2. Consecution: 

a. Inductivity: ∀t>0, ∃q∈Q, t’<t,∀t”, 
t’≤t”<t, r(t”)=q and v(t) ∈ c(r(t”), r(t)) 
and 

b. Continuity: ∀t, ∃q∈Q, t’>t, ∀t”, t<t”<t’, 
r(t”)=q and v(t”) ∈ c(r(t), r(t”)). 

When T is discrete, the two conditions in 
Consecution reduce to one, i.e., ∀t>0, v(t) ∈ 
c(r(pre(t)), r(t)) where pre(t) is the previous time 
point of t.  

      If r is a run, let Inf(r) be the set of automaton-states 
appearing infinitely many times in r, i.e., Inf(r) = 
{q|∀t∃t’≥t, r(t’)=q}. A run is called accepting if and only if 

1. Inf(r) ∩R≠0, i.e., some of states appearing 
infinitely many times in r belong to R, or 

2. Inf(r) ⊆ S, i.e., all the states appearing infinitely 
many times in r belong to S. 

      For a timed ∀-automaton, in addition for a run to be 
accepting, it has to satisfy time constraints. Let I ⊆ T be a 
time interval and |I| be the time measurement, and let r|I be 
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a segment of r over time interval I. A run satisfies time 
constraints if and only if: 

1. Local: For any q ∈ T any time interval I, if r|I is a 
segment of consecutive states of q, then |I| ≤τ(q); 

2. Global: For any time interval I, if r|I is a segment 
of consecutive states of B∪S, then ∫IχB(r(t))dt 
≤τ(B), where χB: Q→{0,1} is the characterization 
function for the set B. 

 
[Definition 2] A timed ∀-automaton TA = (A, T, τ) 
accepts a trace v, if and only if  

1. All runs are accepting for A; 
2. All runs satisfy the time constraints. 
 

      With the semantics defined, we can infer that, for the 
timed ∀-automata in Figure 1, (a) specifies the behavior of 
reachability, i.e., eventually the system should satisfy 
constraint G, (b) specifies the behavior of safety, i.e. 
constraint G is never satisfied, (c) specifies the behavior of 
bounded response, i.e., whenever constraint E is satisfied, 
constraint F will be satisfied within bounded time and (d) 
specifies the behavior of real-time response, i.e., whenever 
constraint E is satisfied, constraint F will be satisfied 
within 5 time units. 
 

3. EXAMPLES OF PERFORMANCE 
SPECIFICATION 
Timed ∀-automata are simple yet powerful for the 
specification of behaviors of dynamic systems, since it 
integrates constraint specification with timed dynamic 
behavior specification. 

3.1. Examples of Constraint Specification 
Constraint specification alone can specify many 
performance metrics. Constraints specify relations between 
external environment stimuli and an agent’s internal 
knowledge representation, or between internal states and 
actions, or between the current and next states.  Constraints 
can be finite, discrete or continuous, or any combination of 
the above. Constraints can be linear, nonlinear, equalities 
or inequalities. Moreover, constraints can also specify 
optimal conditions or optimality with extra constraints, or 
combinations of multiple optimal criteria and additional 
constraints.  
      Considering the following examples for specifying 
constraints: 

1. Inequality: f(x) ≤ 0 where x is a vector of 
variables and f is a vector of functions. 

2. Optimality: min |f(x)| where |x| is a norm for x. 
3. Negation: x ≠ y. 
4. Constrained Optimality: min|f(x)| given g(x)≤0. 
5. Robustness: Let f(x) be a set of output functions 

with x as inputs. The robustness can be 

represented by its Jacobian J = ∆f/∆x. There are 
many ways to state an optimal condition for 
robustness. One method is to minimize |w| where 
w is the diagonal elements of W in the singular 
value decomposition of J = UWVT. 

 

3.2. Examples of ∀-Automata 
With automata, timed dynamic behaviors can be specified. 
Here is a set of examples for specifying performance using 
timed ∀-automata, as shown in Figure 1: 

1. Let G be a constraint that the distance between 
the robot and its desired position is less than some 
constant value. Then Figure 1(a) specifies that the 
robot will eventually arrive its desired position. 

2. Let G be a constraint that the error of a learning 
algorithm is less than a desired tolerance. Then 
Figure 1(a) specifies that the learning will 
eventually convergence. If let the state of ¬G in 
Figure 1(a) as a timed state with time bound t, it 
further specifies that the learning will be done 
within time t. 

3. Let G be a constraint that the distance between 
the robot and obstacles is less than some constant 
value. Then Figure 1(b) specifies that the robot 
will never hit any obstacle. If G denotes that the 
current memory usage is out of the limit, Figure 
1(b) specifies that the memory usage at any time 
is within its limit. 

4. Let E be an external stimuli and F be a response. 
Then Figure 1(c) specifies that there is a response 
after stimuli within bounded time. Figure 1(d) 
specifies that such a response is within 5 time 
units. 

      Even though timed ∀-automata are powerful, still they 
are not able to represent all forms of performance metrics. 
For example, optimal performance over time min∫f(t)dt is 
not specifiable with timed ∀-automata. This form is mostly 
used for characterizing energy, efficiency or overall errors. 
Furthermore, specification with probability behaviors are 
not included either. However, it is not hard to add 
probability, for example, instead of “all runs” must be 
accepting and satisfying time constraints, we can say “x% 
runs” must be accepting and satisfying time constraints.  

3.3 Performance Comparisons 
Note that requirements specification defines what the 
system should do, rather than defining how the system is 
organized, i.e., its architecture. For example, behavior-
based control [4,6] (which is arbitration based or a 
horizontal hierarchy) has a different form of architecture 
from function-based control [5] (which is abstraction-
based or a vertical hierarchy); model-based systems have a 
different form of architecture from learning-based systems, 



event-driven systems have a different kind of architecture 
from time-driven systems. Different systems with different 
architectures can still be compared based on the behavioral 
interface under the formal performance specification. For 
example, given a set of requirements specification Rs and 
system A satisfies a subset As ⊆ Rs and system B satisfies 
a subset Bs ⊆ Rs. If As ⊆ Bs, system A is not better than 
system B with respect to requirements Rs. Similarly, if 
system A satisfies requirement α and system B satisfies 
requirement β and if α implies β, system A is better than 
system B with respect to the requirement. 
      However, this specification does not define metrics on 
architectures. The measurement of performance should 
come from the customer’s point of view, but the 
measurement of architecture should come from the 
developer’s point of view, i.e., design time, debug time, 
upgrading time, modularity and the percentage of re-usable 
components.  

4. SYSTEM VERIFICATION 
For most dynamic systems, stability or convergence is the 
most important property that needs to be verified. For 
example, we can verify that equation dx/dt = 0 satisfies the 
property of ∀-automaton in Figure 1(a) with G as |x|≤ε for 
any positive number ε. The most commonly used method 
for the verification of such properties is the use of 
Liaponov functions. We developed a formal method based 
on model-checking, that generalizes Liaponov functions 
[13,17]. This method is automatic if the domain of interest 
is finite discrete and time is discrete [13].  
      The details of the model-checking method are out of 
the scope of this paper. The basic principle is to first find a 
set of invariants, each associated with an automaton-state 
in the timed ∀-automaton. Then, find a set of Liaponov 
functions, which are non-increasing in stable states and 
decreasing in bad states. Finally, find a set of local and 
global timing functions, where local timing functions are 
decreasing in timed states and global timing functions, like 
Liaponov functions, are non-increasing in stable states and 
decreasing in bad states, in addition to be bounded in 
values. 
 

5. RELATED WORK AND CONCLUSION 
Much work has been done in formal approaches to system 
specification and verification [1,2,7,8]. In general, there 
are two schools. One is to develop a uniform specification 
for both systems and their requirements; the other is to use 
two different specifications, one for systems and one for 
requirements. The advantage of the former is that the same 
formal approach can apply to both system synthesis and 
system verification. However, in most cases, if the 
specification language is powerful for both systems and 
requirements, the synthesis or verification tasks become 

hard. We advocate the latter approach, i.e., using timed ∀-
automata for requirements specification and using 
Constraint Nets [13,18,19] for system modeling. Control 
synthesis [13,14] and verification [13,15,16,17,20] are also 
studied in this framework. 
      In this paper, we have shown how to use formal 
methods to specify the performance metrics of intelligent 
systems, with timed ∀-automata as an example. The 
advantage of formal methods over other methods lies in 
their precision and generality. Timed ∀-automata, with its 
graphical depiction and constraint specification, is a simple 
yet powerful formalism for specifying many properties of 
dynamic systems. 
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Each scientific development that claims to provide a “new way” for approaching existing problems
needs proper (i.e. formal and quantifiable) evaluation methods and consensus-based criteria for
measuring the validity of its claims.  Taken together, these methods and criteria constitute the metrics by
which new developments are being measured against their claims.  Various claims have been made in
the literature for the technology of intelligent software agents.  Such claims include a new approach to
programming providing a breakthrough comparable to the one achieved through object-oriented
methods;  an approach to programming that is more readily understood by non-programmers; an
approach that lowers the costs of software inter-operability.

Software agents need proper metrics if the technology is to fulfill its promises and make a lasting
impact.  One characteristic distinguishing software agents from software developed with object-oriented
and procedural methodologies is  the anthropomorphic characteristics that agents exhibit.   Various
taxonomies for software agents currently exist [1, 2, 3]. Agents typically present one or several of the
following characteristics:

• Pro-activeness and goal-orientation
• Reactiveness (reactive agents)
• Autonomy (rational agents, and others)
• Mobility (mobile agents)
• Learning and reasoning ability (deliberative agents, and others)
• Social ability: communication and cooperation (multi-agent systems)

An agent is considered intelligent if it can learn from its environment and modify its behaviors and goals
to respond to environmental constraints that were uncertain and unforeseen at the time of development.
Agents are thus particularly adapted to model environments where software components act
autonomously on users’ behalf and problem-solving environments where parameters of computation
dynamically change during processing.  The ability to learn for an agent is coupled with the ability to
perform resource and knowledge discovery.  This action may take the  form of querying and updating
knowledge-based systems. Knowledge discovery and interpretation bring latency to the agent and may
impair the achievement of its overall goals.  For instance, reactive agents that need a quick response
time may not embody much learning and reasoning because the overhead renders the agent useless.



2

Software agents present one or some capabilities that are affected by the choice of specific components
described in the Tools of Intelligence (see White paper).  For instance, searching for a required object
within a scene is one area where software agents have successfully been implemented.  If you take the
“scene” to be an information space like the Internet, information-gathering and retrieval agents display
this capability and have been successful at performing the task.  Deliberative agents such as Belief-
Desire-Intention (BDI) agents exhibit the capability of remembering scenes and experiences as their
Beliefs are based on this capability.  These agents are also able to interpret and respond to unforeseen
situations.

Agents’ ability to autonomously execute processes on remote systems, given the appropriate
permissions, is also a characteristic some intelligent systems (but not all) need to efficiently and
effectively perform.  This requires proper measures.   This characteristic, known as mobility, has very
different meaning for physical agents.

Mobility requires intelligence for software agents because true mobility requires resource discovery.
For those agents designed as mobile agents the degree of mobility can constitute a measure of its
intelligence.  Mobile agents travel over networks such as the Internet and execute processes on remote
platforms.   Mobile agents may start execute a process on a particular machine, be unexpectedly
interrupted, travel to another available platform, and continue the execution of the process from where it
was interrupted.    Such a mobile agent needs intelligence to interrupt and restart its execution
autonomously without resetting, and for determining which resources to use in a networked
environment.  Network agents used for telecommunication applications (such as testing the reliability of
a network) exemplify these types of agents.

Social intelligence needs to be measured in multi-agent systems.  The degree of social interaction and
the agents’ ability to exhibit social behavior constitute an important criterion for multi-agent systems.
Not all agent-based systems need to exhibit this characteristic (mobile agents may never need to talk to
each other for instance).   The type of social interaction between agents conditions knowledge
acquisition and interpretation.  The social model affects the individual pursuit of goals and may
ultimately affect the survival of the system [4].  When one considers a multi-agent systems, there are at
least two models. Both types of multi-agent systems, collaborative and cooperative, display the
characteristics of open systems.

• Model 1: Each individual agent’s goal is subservient to an over-arching goal of the system.  We have
a  cooperative system, where agents agree not to pursue goals detrimental to each other and the
whole system, even if these “careless” goals are in accordance with the individual agent’s goal.

• Model 2: Each agent acts on its own behalf without recognizing a higher agent-entity with the ability
to regulate its goals (there is still a need for a kind of supervisor agent that regulates
communication).  We have a collaborative system.  This is the case for so-called rational agents,
used especially in e-commerce, where agents act in a market-like environment, with the ability to bid
for money on the goods and services each offers.

Agent-communication languages should theoretically let heterogeneous agents communicate, but none
currently do [5].  A significant part of the inter-operability issue is the lack of a shared content language
and ontology.  An ontology expresses, for a particular domain, the set of terms, entities, objects, classes
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and the relationships between them with formal definitions and axioms that constraint the interpretation
of these terms [6].  These definitions and axioms are written in a variety of logical languages (e.g.  KIF
[7]), and provide a formal theoretical basis to domain taxonomy.  They can serve to automatically infer
translation engines between software applications.  By making explicit the implicit definitions and
relations of classes, objects, and entities, ontologies also contribute to knowledge sharing and re-use
across systems.   The use of ontologies in agent-based systems is proposed as a criterion for the metrics
of intelligent software agents. The degree of completeness and consistency of ontologies can be formally
proven and provide a quantifiable criterion.

Ontologies constitute an important criterion for the metrics of intelligent software agents, in particular
for agents exhibiting the social abilities of communication and cooperation.  Software agents require the
use of or a translation to a shared terminology and syntax in order to efficiently and effectively inter-
operate. Agent-communication languages such as KQML meet the challenges of inter-operability with
mitigated success [8].   Agent communication languages specify the possible use of ontologies in their
syntax but do not require it. FIPA ACL proposes an ontology service as a normative specification [9].

In conclusion, software agents exist either as standalone or in social systems.  Agents are made of
components, and an agent-oriented architecture typically includes the agent application as well as an
environment in which agents execute.  They may execute on a single machine, on several machines
connected locally or by wide-area network.  These agents need a degree of mobility.  They may be
developed by different developers on different platforms, and therefore need a common communication
language including protocol and ontologies (see [10] for an assessment of the state-of-the-art in this
area).    In addition, since agents may exhibit any combination of the characteristics above, some
taxonomies of agents prefer a classification based on the domains in which software agents have been
successfully implemented [11], rather than on their inherent characteristics.

Software agents also exist as whole, where an agent-based system is made of the agent and the
underlying environment.    The environment may include the knowledge repositories and ontologies
which are key to the agents’ degree of intelligence.  For this reason, the mind/body dichotomy, and the
proposition to measure the intelligence of the system based on the intelligence of the mind (controller),
do not hold for agent based systems.

In addition to characteristics applicable to Constructed Systems with Autonomy, the metrics of
intelligence for software agents need to include the following (not all these characteristics need apply for
the same system):
• be domain-specific
• measure the degree of mobility
• present an agent communication language
• refer to ontologies.
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ABSTRACT

The minimal representation size criterion provides a metric for the
configurational complexity of robotic tasks and may be used to
evaluate alternative algorithms, strategies, and architectures for the
accomplishment of specific tasks.  The principles of explicit and
implict representation are used to define this complexity and the
resulting information measure derived may be considered as a
measure of configurational intelligence of the system.
Specifically, these measures indicate the internal explicit
information required to specify the accessible states of the robotic
system using its available perception and actuation capabilities.
The resulting approach may be used to evaluate and guide
applications tasks such as robotic assembly and multisensor
manipulation.
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1.  INTRODUCTION

Intelligent robotic systems couple computational
intelligence to the physical world and such systems may be
considered as intelligent agents that perceive the
environment, and select an action or sequence of actions to
affect the environment.  Such an intelligent agent constructs
an internal “representation” of the environment, and uses
reasoning to choose among alternative actions.
Specifically, we can define robots as “active, artificial,
intelligent agents whose environment is the physical
world”.   Such agents may be distinguished from software
agents, human agents, and others.

Such an intelligent robot is regarded as “rational” if the
agent makes decisions to choose actions that accomplish a
known task goal, or increase a performance measure of the
task.  It is important to distinguish the presence of
intelligence from the metric of performance.  Intelligence
(reasoning), in itself, does not maximize overall
performance.  However, intelligence may be used to choose
among a set of candidate actions that may improve
performance or achieve a goal.

An intelligent robot may also be characterized by its
autonomy.  In the context of these definitions, autonomy
refers to the capacity of the robot to define its own goals or
sub goals, often based on its perception and internal
representation of the environment.  Autonomy widens the
scope of tasks, which the same system can perform without
reprogramming, but in general, requires more sophistication
in the design and architecture of the system.  The non-
autonomous system may accomplish a smaller set of tasks
and may require efforts to constrain or redesign the
environment to conform to task assumptions.

The structure of an intelligent robot agent includes
perception, representation, reasoning, and representation.
The implementation of such an agent requires two major
components: (1) Algorithms that define the representation
structure and reasoning sequence, and (2) Architecture that
defines the organization of the system to accomplish set
goals and performance.  In practice, the selection of the
architecture has been strongly intertwined with the nature of
the representation.  For example, one simple intelligent
robot defines a perception-action pair such as “move hand
if you touch the hot stove!”  Such a reflex action might be
expressed as a look-up table in which state representation is
a simple binary element.

As the complexity of robots and tasks increases, a single
reflex action is inadequate to create required behaviors, and
architectural approaches have tended to evolve in two
directions.  First, hierarchical architectures have been
based on the definition of a hierarchy of explicit
representation of the robot state.  A hierarchy of perceptual
representation may involve image features, shapes, objects,
scenes, etc., while a hierarchy of actions may involve joint
motion, arm motion, robot motion, sensor-based motion etc.
The formal definition of such a hierarchical architecture [1]
has provided an important basis for building consistent,
predictable, and programmable robotic systems.

A second trend has been the development of behavioral
architectures [3] that expand upon simple reflexes by
creating a network of interdependent reflexes in order to
increase the sophistication of the behaviors.  One such



behavioral approach is the subsumption architecture [5] that
utilizes finite state machines to impose a priority setting
logic on the reflex actions.  The nature of such behavioral
architectures is to incorporate an implicit representation of
the environment in order to define a simplified state space
of perceptions and actions.  From a systems perspective, the
behavioral architecture utilizes constraints or assumptions
about the environment to identify a subspace (manifold)
within the explicit state space.  A reflex action, or set of
actions, may then be defined within the subspace with the
logical consistency to achieve goals and performance
metrics.

The distinction between explicit and implicit  representations
is important to the interpretation of intelligence in systems.
A simple task example helps to illustrate these distinctions.
Consider a room with a single door containing a mobile
robot.  The robot task goal is to exit the room, and it may
have a performance metric of minimum time to exit.
Several different types of algorithms may be considered:
(1).  Random search (Figure 1a)

The robot moves in random directions without using
perception, mechanically bouncing off the walls.
Eventually, it is guaranteed to exit the room.

(2).  Wall following – simple reflex  (Figure 1b)
The robot uses a simple sensor to detect presence or
absence of an adjacent wall.  The algorithm:

IF (‘wall-is-in-front’) THEN (‘Turn-Right’) ELSE
(‘Follow-wall-on-left’)

is guaranteed to find the door, though the path may be
long.

(3).  Perception - Explicit state representation (Figure 1c)
The robot uses a sophisticated vision sensor to view the
door, acquire a perception, P, update the global internal
state representation, GS, and plan an explicit path to
the door.

(4).  Perception – Implicit state representation  (Figure 1d)
The robot defines an implicit mapping of GS to local
state, LS, that is consistent with the desired goal state.
By mapping perception into LS, rather the GS, the
resulting algorithm is often more efficient and simpler
to implement.  In this case, consider a sensor that
perceives only the width, W, of the door, but no other
attributes of the environment.  We choose W to be the
local state representation, LS = W, and define a local
reflex algorithm to choose an action, A:
        Choose A to increase W.
(a).  If robot, R, moves toward the door, W’ > W.
(b).  If R moves perpendicular to the door, then W’>W.

The resulting local changes in W move the robot toward
and through the door, achieving the global goal.  However,
LS is never sufficient to explicitly locate the robot in the
room, i.e. determine GS.  This strategy is analogous to a
potential field mapping related to the perceived door width
feature of the room.  The same strategy may be used as a

feature-based method to guide a peg-in-hole or other
assembly problem using visual servoing of the area of the
target hole [26].

These examples illustrate several types of  tradeoffs in the
design of intelligent systems, and also confirm that the most
intelligent system may not result in the optimal
performance on a given task, as illustrated in the
performance of the feature-based example. First, for this
purely geometric task, we can define one component of the
intelligence of the system, the configurational complexity as
the information required to represent the accessible states
of the internal representation of the system.  “Accessible
states” are defined as those states that may be achieved as
goal states of the system through its perception-action
algorithms.  In this sense, the representational intelligence
of the system is equated to the size of the internal
representation space.

 For the examples in Figure (1), the configurational
complexity is found to be:  (a). 1 bit,  (b). 3 bits,  (c). 30
bits, and  (d). 10 bits, where a resolution of 10 bits has been
assumed for the vision sensor used in (c) and (d).  By
considering the approximate number of steps required to
achieve the result, on can similarly compute the cumulative
complexity for each of the tasks to be: (a).  100 bits,  (b).
75 bits,  (c).  60 bits, and  (d).  20 bits.   Therefore, the
minimal complexity approach to the task is given by
strategy (c) and may be regarded as a tradeoff between
explicit and implicit information needed for the task.

In addition, the time (number of steps) required for each
task is implicit in the cumulative information and reflects
the inherent deficiencies in the worst case scenarios for (a)
and (b).  Based on the viewpoint of encoded residuals
discussed in the next section, one can also calculate the
encoded implicit information for each strategy: (a).  20 bits,
(b).  18 bits,  (c).  0 bits,  (d).  12 bits.

Figures (e) and (f) emphasize the inherent assumptions that
are often present in such systems.  Strategies (a) and (b) are
not guaranteed to succeed for problems (e) and (f), where
the subspace manifold defined by the strategy is no longer
guaranteed to contain the goal.  Strategies (c) and (d) may
still succeed but require more steps and a more
sophisticated algorithm.



Figure (1).  Examples of alternative strategies for the task of exiting a room through the door:  (a). Random search,  (b).
Wall-following, (c). Explicit representation and global planning, (d). Implicit representation and local reasoning.  All four
strategies will accomplish the basic task.  However, (a) and (b) are not general and will fail when the environment differs
from the basic assumptions, such as in (e) with inner walls, and in (f) with multiple doorways.



2.  MINIMAL REPRESENTATION SIZE

The minimal representation size (MRS) methods
[6,18,19,23,24] used in this work are also called “minimum
description length” methods in the literature.  The MRS
approach introduces an information measure of model
complexity and has been applied to a number of related
problems in attributed image matching [22], shape
matching [11], density estimation [4], and model based
sensor fusion [11-17].  The minimal representation criterion
defines the minimal overall data representation among a
choice of alternative models and trades off between the size
of the model (e.g. number of parameters) and the
representation size of the encoded residuals.  Intuitively, the
smaller, less complex, representation is chosen as the
preferred model for a given performance criterion.  In terms
of the robotic systems we consider here, the representation
size combining state and model information serves as a
measure of system intelligence, and the MRS criterion will
select the minimal complexity system for a given task
performance.  In practice, the MRS criterion has advantages
in the attainment of consistent metrics without the
introduction of problem specific heuristics or arbitrary
weighting factors.  The MRS family of methods provides a
type of “universal yardstick” for data and models from
disparate sources, and therefore has been successfully used
in multisensor fusion interpretation problems.

The MRS criterion has been proposed as a general criterion
for model inference by Rissanen [19] and by Segen and
Sanderson [23].  It is an expression of the ideas on
algorithmic information theory pioneered by Solomonoff
[24], Kolmogorov [18], and Chaitin [6].  The MRS
approach is based on the principle of building the shortest
length program that reconstructs observed data.  The length
of this program or representation size depends on both the
statistics of the sensors and on the systems “knowledge” of
the environment, specified by a set of models and
constraints.

More formally, the representation size is the length of a
program in bits that, when executed on a deterministic
Universal Turing Machine (UTM) [7] would reproduce the
observed data on the output tape.  A model based encoding
scheme is used in which the data is thought to be arising
from one of the several available models in a model library,
Q.  The models may differ in structure and number of
parameters.  The observed data D is encoded by specifying
an instantiated model q and the deviations or residuals of
the data D from the selected model q  ε Q.  The resulting
representation size is

L[q,D|Q] = L[q|Q] + L[D|q,Q]

               = L[q|Q] + L[A|q,Q] + L[D|Q,q,Q]

where L[q,D] is the total representation size of data D when
explained using model q, given a model library Q.
L[d|A,q,Q] is the number of bits needed to encode the data
deviations or residuals from the model, given a coding
algorithm, A.  L[A|q,Q] is the number of bits required to
specify the coding algorithm itself, given an environment
model.   L[q|Q] is the number of bits required to encode the
environment model (structure and parameters) given a
model library, Q.

According to the minimal representation principle, the best
explanation of the observed data is the one with the smallest
representation size

    Qopt = arg minqεQ L[q|Q] + L[A|q,Q] + L[D|A,q,Q].

This approach finds the simplest explanation of the data
that is most likely, and objectively trades off between
model size, algorithm complexity, and observation errors.
Rissanen [19] showed that a finite set of random samples
from a class of probability distributions would be
complexity bounds as defined by Kolmogorov [18] and
others [6,24], and the representation size can be used to
choose among alternative distribution models.  Barron and
Cover [4] showed that such a minimal representation size
probability distribution is statistically accurate and the rate
of convergence is comparable to other methods of
parametric and nonparametric estimation.  In our previous
work [13-17], we have structured the model-based pose
estimation problem such that the pose transformation
parameters are isolated elements of the statistical model,
and may be estimated by the minimal representation
criterion.

3. PARTS ENTROPY AND INFORMATION
MEASURES FOR ASSEMBLY

Geometric task complexity is directly related to the
geometric state space and the precision of state definition or
partitioning.  In earlier work [20], we have defined the parts
entropy as a measure of configuration uncertainty in
mechanical systems with particular application to assembly
analysis and assembly planning.   In this formulation, the
entropy of a distribution of independent objects, or parts, is
given by

Hn = Hn ( P1, …, Pn ) = - Σ Pk  log2  Pk  .

where uncertainty in position and orientation is described
by the joint probability distribution P(x,y,z,α,β,χ) over the
joint ensemble.  As an entropy measure [7], H may also be
interpreted as the information required to specify the
position of the objects in their geometric configuration
space.



The part entropy of an object is defined with respect to the
mechanically distinguishable positions and orientations, and
the resolution, d, in each coordinate degree of freedom.
The symmetry of an object therefore strongly affects the
resulting orientational entropy and is defined by the set of
group operations that leave the object invariant.  For
example, a sphere has 0 bits of orientational entropy, while
a cube with 10 bits of resolution would have 24 bits of
entropy.

The part entropy may be used as a basis for the
configurational representation size, and is directly related to
the set of constraints or other geometric assumptions made
on the environment.  For example, a flat surface reduces the
entropy of parts that sit on it.  The entropy of a cube sitting
on a table (with 10 bits of resolution) is 28 bits, while a
general rectangular solid will be 30.1 bits, and a cylinder
may vary from 20 to 30 bits depending on its proportions.

For an assembly task, we consider a set of parts {Qi}, I =
1,…,N, such that the part relationships are defined by join
probabilities P[Q1… QN], and the parts entropy is defined as
the joint entropy H[Q1… QN].  If the parts are positioned
independently, for example, prior to assembly, then the
probabilities will be independent:

P[Q1… QN] = P(Q1) P(Q2)…P(QN),

and

      H[Q1… QN]  =  Σ H(Qi).

As the assembly task proceeds, individual parts entropies
decrease as parts are positioned, and the entropy of the
ensemble decreases as part dependence is increased during
mating operations.  In this sense, an overall goal of the
assembly task is to reduce the joint entropy of the ensemble
of parts.  If we define the entropy of the final rigid
assembly to a reference frame with HQ = 0, then the relative
entropy of parts and subassemblies may be tracked as a
function of time and the entropy flow of the process
described in terms of bits per second, that is, information
flow.  Alternative systems choices and parts designs may be
compared in terms of the entropy flow and used to guide
decisions on assembly system design.  An example
described in [20] tracks the parts entropy sequence for
sequential assembly for three different electronics assembly
strategies.  Similar concepts of part probability distributions
may be linked to tolerance specifications of assemblies, and
have been used to evaluate assemblability based on
maximum likelihood methods [21], and used to guide
assembly planning tasks [8-10].

4. MULTISENSOR FUSION MANIPULATION
EXAMPLE

Figure (2).  Five fingered anthropomorphic robot hand
manipulating an object.  The camera observes motions and
minimal representation metrics are used to determine object
configuration [16].

The MRS approach has been applied to the problem of
multisensor fusion for pose identification of objects using in
manipulation by a robot hand.  The setting of the task is
shown in Figure (2).  A five-fingered Anthrobot-3 [2] hand
is mounted on a six degree-of-freedom (DOF) articulate
PUMA-760 robot arm.  The hand is provided with finger tip
tactile sensors that sense planar surface contact with the
grasped object.  The hand is in the field of view of a
calibrated camera with edge detection algorithms.  A
polyhedral object is grasped by the hand and manipulated
within the camera view.

In this task scenario, the minimal representation criterion is
used to integrate the perception and manipulation steps
through the use of consistent information-based criterion
for consistency of interpretation of the manipulation with
the viewed object pose from the camera.  In this task, both
the camera information and the tactile sensing data is
extremely noisy and uncertain.

The minimal representation formulation of this problem is
described in detail in [16].  In this approach, the model-
based representation of the hand-eye coordination is
described by a set of general constraint equations

     h(y;z) = 0

where Y is a set of model features, and Z is a set of
observed data features.  In general, such constraints may



themselves depend on other model features.  Often
observed data features may not be related to actual events
and identified as unmodeled data features.

The association between the observed data features and the
model features is defined by a correspondence w, and this
correspondence is a part of the identified model.  In
addition, a model of the feature extractor, F, for vision and
tactile sensing is used to described the process.  Application
of the MRS approach defines a representation size for each
candidate model and set of observations subject to the data
constraint manifold, DCM, defined by h(y;z).  The
representation size of the model and encoded residuals is
minimized within the measurement subspace locally
orthogonal to the DCM.

In general, the search over many candidate models and
correspondences is difficult and does not lend itself to
linear continuous search techniques.  In [16]  we use a
differential evolutionary algorithm [25] to carry out this
search and identify viable interpretations as minimal
representation size interpretations of manipulation and
sensing states of the system.  Figure (3) shows an example
of the evolution of the configuration states of the system as
the differential evolutionary algorithm proceeds.  The
system converges to a well-defined and consistent
interpretation of the current state (figure (4)).

5. DISCUSSION

The minimal representation size criterion provides a metric
for the configurational complexity of robotic tasks and may
be used to evaluate alternative algorithms, strategies, and
architectures for the accomplishment of specific tasks.  The
principles of explicit and implict representation are used to
define this complexity and the resulting information
measures derived may be considered as a measure of
configurational intelligence of the system.  Specifically,
these measures indicate the internal explicit information
required to specify the accessible states of the robotic
systems using its available perception and actuation
capabilities.  The resulting approach may be used to
evaluate and guide applications tasks such as robotic
assembly and multisensor manipulation.

As discussed here, the characterization of tasks is defined
with respect to geometric configurations.  An important
extension of this work is to consider the application of such
a formulation to a more general task space involving, for
example, force and dynamics of the system requirements.

Figure (3).  Differential evolution algorithm utilizes
representation size metric to search for consistent
interpretations of object pose in the hand of manipulator.
The minimal representation size pose requires the minimum
information to represent.



Figure (4).  Final minimal representation pose of the object
determined by the differential evolution search.

A second extension of this work is the consideration of
intelligent robotic systems with adaptation and learning
capabilities.  As shown in the multisensor fusion
manipulation example, the representation size may be used
as a criterion for evolutionary learning of configuration
interpretations.  In general, this approach might be used to
guide learning of algorithmic structure and strategies
leading to more sophisticated behaviors.
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,Q PDQ\ UHDO ZRUOG DSSOLFDWLRQV� V\VWHP $XWRQRP\ LV WKH

PRVW VLQJOH VLJQLILFDQW DQG PHDQLQJIXO DWWULEXWH RI

,QWHOOLJHQW $XWRQRPRXV 6\VWHPV � ,$6� 7KLV SDSHU SUHVHQWV

SHUIRUPDQFH PHWULFV IRU ,$6� ZKLFK DUH UHODWHG WR

$XWRQRP\� 0HWULFV DUH SUHVHQWHG DQG GHILQHG� 7KHVH PHWULFV

DUH FXUUHQWO\ EHLQJ XVHG LQ RQ�JRLQJ UHVHDUFK� GHYHORSPHQW

DQG HQJLQHHULQJ ZRUN�

���� ������������

)URP DQ HQJLQHHULQJ SRLQW RI YLHZ� SHUIRUPDQFH PHWULFV IRU

,$6 DUH QHHGHG IRU HVWDEOLVKLQJ DQG GHYHORSLQJ WKH

IROORZLQJ V\VWHP OHYHO SURFHVVHV� D� D VXE�SURFHVV ZLWKLQ

WKH PXOWL�SKDVH V\VWHP HQJLQHHULQJ SURFHVV� H�J�� V\VWHP

UHTXLUHPHQWV DQDO\VLV� E� SUHOLPLQDU\ DQG GHWDLOHG GHVLJQ

SURFHVV� F� &RQFHSW�RI� 2SHUDWLRQ GHYHORSPHQW SURFHVV� G�

FRPSDUDWLYH HYDOXDWLRQ RI DOWHUQDWLYH GHVLJQV�

$ IXQGDPHQWDO TXHVWLRQ ZKLFK LV UHODWHG WR ,$6 SHUIRUPDQFH

PHWULFV LV� :KLFK HQWLW\ LV PRUH PHDQLQJIXO DQG SUDFWLFDO

WR GHILQH DQG WR PHDVXUH ZLWK UHVSHFW WR ,$6 SHUIRUPDQFH ±

$XWRQRP\ RU ,QWHOOLJHQFH" 2XU SRVLWLRQ LV WKDW IURP WKH XVHU

SRLQW RI YLHZ� DV ZHOO DV IURP WKH V\VWHP DUFKLWHFW DQG

GHVLJQHU SRLQW RI YLHZ� $XWRQRP\ LV WKH SUHPLHU

FKDUDFWHULVWLF DWWULEXWH RI DQ ,$6� $OWKRXJK ,QWHOOLJHQFH

HQDEOHV $XWRQRP\� LW LV QRW FRQVLGHUHG E\ XV DV HLWKHU DQ

DSSURSULDWH RU D SUDFWLFDO V\VWHP GHVLJQ REMHFWLYH RU D

V\VWHP SHUIRUPDQFH UHTXLUHPHQW SHU VH�

7KH FRQFHSW RI $XWRQRP\ LV SUREDEO\ PRUH PHDQLQJIXO�

PRUH FRPPXQLFDWDEOH� DQG PRUH SUHFLVHO\ PHDVXUHDEOH� DQG

LW LV HDVLHU WR FRPH WR D FRQVHQVXV DERXW ZKDW $XWRQRP\ RU

ZKDW DQ $XWRQRPRXV 6\VWHP LV DOO DERXW� UDWKHU WKDQ ZKDW LV

,QWHOOLJHQFH RU ZKDW LV DQ ,QWHOOLJHQW 6\VWHP�

��� ������� 

&XUUHQWO\� WZR GLVWLQJXLVKHG DSSURDFKHV WR GHILQH V\VWHP

DXWRQRP\ DUH XVHG E\ UHVHDUFKHUV DQG JURXSV ZLWKLQ WKH

LQWHOOLJHQW DXWRQRPRXV V\VWHPV �LQFOXGLQJ DXWRQRPRXV

DJHQWV� FRPPXQLW\� 7KH ILUVW DSSURDFK GHILQHV DXWRQRP\ DV

DQ HQWLW\ ZKLFK LV DVVLJQHG WR WKH VXEMHFW V\VWHP RU WR WKH

VXEMHFW DJHQW E\ D KLJKHU OHYHO DXWKRULW\� H�J�� D VXSHUYLVRU

DJHQW� :LWKLQ WKH FRQWH[W RI WKLV DSSURDFK� DXWRQRP\ LV

GHILQHG ZLWK UHVSHFW WR WKH DVVLJQHG UHVSRQVLELOLW\ RI D

V\VWHP RU DQ DJHQW� :LWKLQ WKLV FRQWH[W� DXWRQRP\ UHIOHFWV

WKH DJHQW
V GHFLVLRQ�PDNLQJ FDSDELOLW\ DQG DXWKRULW\� DQG

WKH GHJUHH RI VHOI FRQWURO WKH DJHQW KDV RYHU LWV RZQ

GHFLVLRQV� VHH >�@� 7KLV DSSURDFK LV PRUH FRPPRQO\ XVHG

ZLWKLQ WKH DXWRQRPRXV DJHQWV FRPPXQLW\� 7KH RWKHU

DSSURDFK GHILQHV V\VWHP RU DJHQW DXWRQRP\ ZLWK UHVSHFW WR

LWV VHOI FDSDELOLW\ WR DFFRPSOLVK LWV DVVLJQHG PLVVLRQ JRDOV

ZKLOH RSHUDWLQJ XQGHU XQFHUWDLQ G\QDPLF HQYLURQPHQW�

XQFHUWDLQ G\QDPLF VFHQDULR DQG VHOI IDXOW\ VLWXDWLRQV� DQG

ZLWKRXW RU ZLWK YHU\ OLWWOH KXPDQ RU H[WHUQDO DJHQW

LQWHUYHQWLRQ� >�@� >�@� :H DUH XVLQJ WKH ODWHU DSSURDFK�

'HILQLWLRQ� $XWRQRP\ LV DQ DWWULEXWH RI D V\VWHP ZKLFK

FKDUDFWHUL]HG LWV DELOLW\ WR DFFRPSOLVK WKH V\VWHP
V DVVLJQHG

PLVVLRQ JRDOV ZLWKRXW DQ\ RU ZLWK� RQO\ PLQLPDO H[WHUQDO

LQWHUYHQWLRQ� ZKLOH RSHUDWLQJ XQGHU FRQVWUDLQWV DQG XQGHU

XQFHUWDLQ G\QDPLF HQYLURQPHQW DQG VFHQDULR FRQGLWLRQV�



0HWULFV IRU 6\VWHP $XWRQRP\ $ULH <DYQDL

3DJH � RI � 8SGDWH� �������

!� ����"����#����"����� �

,Q WKH VHTXHO� VRPH JXLGHOLQHV IRU PHWULFV VHOHFWLRQ DUH

SURSRVHG�

��� 6FRSH

7KH SURSRVHG PHWULFV VKRXOG UHIOHFW V\VWHP DXWRQRP\ DV

SHUFHLYHG E\ DQ H[WHUQDO REVHUYHU� 7KHUHIRUH� WKH DXWRQRP\

VKRXOG EH PHDVXUHG RXWVLGH WKH V\VWHP ERXQGDU\� L�H�� LQ WKH

LQWHUIDFH RI WKH V\VWHP ZLWK H[WHUQDO HQWLWLHV� )LJXUH �� LQ

WKH VHTXHO� LOOXVWUDWHV WKH FRQWH[W RI $XWRQRP\ (YDOXDWLRQ�

DV SHUFHLYHG E\ DQ H[WHUQDO REVHUYHU� )RXU HQWLWLHV DUH

LGHQWLILHG ZLWKLQ WKH UHOHYDQW FRQWH[W� QDPHO\� D� D 5HPRWH

XVHU RU VXSHUYLVRU� E� DQ ([WHUQDO $JHQW� F� (QYLURQPHQW 	

6FHQDULR� G� 6\VWHP 8QGHU (YDOXDWLRQ �68(�� ZKLFK LV WKH

$XWRQRPRXV ,QWHOOLJHQW 6\VWHP WR EH HYDOXDWHG�

��� $XWRQRP\ 5HOHYDQFH

0HDQLQJIXO� HIIHFWLYH� DQG PHDVXUDEOH PHWULFV IRU V\VWHP

DXWRQRP\ VKRXOG UHIOHFW WKH LQIOXHQFH RI WKH IROORZLQJ

IDFWRUV DV UHODWHG WR V\VWHP DXWRQRP\�

• /HYHO RI $EVWUDFWLRQ RI WKH FRPPDQGV DQG WKH GDWD

SURYLGHG WR WKH DXWRQRPRXV V\VWHP E\ WKH UHPRWH

XVHU� VXSHUYLVRU RU E\ DQ H[WHUQDO DJHQW�

• ,QIRUPDWLRQ EDQGZLGWK EHWZHHQ D UHPRWH XVHU�

VXSHUYLVRU RU DQ H[WHUQDO DJHQW� DQG WKH V\VWHP XQGHU

HYDOXDWLRQ�

• 7KH OHYHOV RI FRPSOH[LW\� G\QDPLFV DQG XQFHUWDLQW\

ZKLFK DUH DWWULEXWHV WR WKH HQYLURQPHQW XQGHU ZKLFK

WKH V\VWHP LV RSHUDWLQJ DQG H[HFXWLQJ LWV PLVVLRQ�

• 7KH OHYHOV RI FRPSOH[LW\� G\QDPLFV DQG XQFHUWDLQW\

ZKLFK DUH DWWULEXWHV WR WKH V\VWHP RSHUDWLQJ VFHQDULR

ZKLOH H[HFXWLQJ LWV PLVVLRQ�

��� *HQHUDOLW\

$OWKRXJK WKH PHDQLQJ RI SHUIRUPDQFH PHWULFV LV XVXDOO\

GRPDLQ DQG DSSOLFDWLRQ VSHFLILF� PRUH JHQHUDO HQWLWLHV� VXFK

DV WKH SULQFLSOH RI HQWURS\ FDQ EH XVHG ZLWKLQ WKH

IUDPHZRUN RI ,$6 SHUIRUPDQFH HYDOXDWLRQ� ,Q RXU ZRUN�

HQWURS\ LV XVHG DV D JHQHUDO PHDVXUH RI HQWLW\ XQFHUWDLQW\�

DQG LV DSSOLHG WR PHDVXUH YDULRXV SDUDPHWHUV� 8VLQJ HQWURS\

DV D JHQHUDO WRRO IRU UHSUHVHQWLQJ XQFHUWDLQW\ LQ WKH GRPDLQ

RI FRQWURO DQG V\VWHP HQJLQHHULQJ ZDV SURSRVHG E\ 6DULGLV

>�@�

��� 6WUXFWXUH ,QGHSHQGHQFH

7KH PHWULFV IRU $XWRQRP\ VKRXOG EH LQGHSHQGHQW RI WKH

LQWHUQDO VWUXFWXUH� H�J� � D� QXPEHU RI OHYHOV RI WKH KLHUDUFK\�

E� WKH GHFRPSRVLWLRQ RI ,$6 LQWHUQDO SURFHVVHV WR UHVROXWLRQ

VFDOHV� F� WKH FRPSXWDWLRQDO SDUDGLJPV� H�J� IX]]\ YV� QHXUDO

QHWZRUNV� DQG G� RWKHU LQWHUQDO VSHFLILF IHDWXUHV� 7KH

DWWHPSW WR HVWDEOLVK PHWULFV ZKLFK WDNHV LQWR DFFRXQW

LQWHUQDO VSHFLILFV RI WKH V\VWHP ZLOO OHDG WR DQ HQGOHVV

FRQIXVLQJ DQG XQSUDFWLFDO HIIRUW� DQG WR XQVWDEOH

VROXWLRQ�GHSHQGHG PHWULFV� 6\VWHP $XWRQRP\ LV D V\VWHP

DWWULEXWH DV SHUFHLYHG E\ DQ H[WHUQDO REVHUYHU� ,Q DQDORJ\�

FRQVLGHU D FRQVXPHU ZKLFK ZDQW WR EX\ D QHZ FDU� +LV

GHFLVLRQ ZLOO QRW GHSHQG RQ ZKHWKHU WKH IXHO LQMHFWLRQ

FRQWURO V\VWHP XVHV D IX]]\ ORJLF EDVHG FRQWUROOHU RU D

GLIIHUHQWLDO JHRPHWU\ EDVHG QRQ�OLQHDU FRQWUROOHU� +RZHYHU�

KLV GHFLVLRQ ZLOO SUREDEO\ EH EDVHG RQ XVHU�FHQWHUHG

SDUDPHWHUV VXFK DV� IXHO FRQVXPSWLRQ �NLORPHWHUV SHU OLWHU��

QXPEHU RI SDVVHQJHUV� VDIHW\ PHDVXUHV� WR QDPH EXW D IHZ�

,Q VXFK HYDOXDWLRQ� WKH LQWHUQDO VSHFLILFV DUH LUUHOHYDQW� 6R

DUH WKH LQWHUQDO VSHFLILFV ZKHQ RQH KDV WR HYDOXDWH WKH

SHUIRUPDQFH RI DQ $XWRQRPRXV ,QWHOOLJHQW 6\VWHP�
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,Q WKH IROORZLQJ VHFWLRQ� WKH PHWULFV XVHG IRU ,$6

SHUIRUPDQFH HYDOXDWLRQ DUH GHILQHG� 7KH QRPHQFODWXUH XVHG

LV GHVFULEHG DV IROORZV�

��� 1RPHQFODWXUH

���

��� (QWURS\

:H DUH XVLQJ HQWURS\ DV D PHDVXUH RI XQFHUWDLQW\ RI V\VWHP

VWDWH� HQYLURQPHQW VWDWH� RU VFHQDULR VWDWH� 7KH XQFHUWDLQW\

DVVRFLDWHG ZLWK SUHGLFWLQJ WKH QH[W HQWLW\ VWDWH� JLYHQ WKH

FXUUHQW HQWLW\ VWDWH� LV D PHDVXUH RI WKH HQWLW\ LUUHJXODULW\ RU


GLVRUGHU
� 7KH OHVV LV WKH HQWLW\ UHJXODULW\� WKH JUHDWHU LV WKH

QH[W VWDWH SUHGLFWLRQ XQFHUWDLQW\ DQG WKH JUHDWHU LV WKH

DVVRFLDWHG HQWURS\� 7KXV� HQWURS\ FDQ EH XVHG DV D PHDVXUH

RI HQYLURQPHQW XQFHUWDLQW\ DV ZHOO DV D PHDVXUH RI VFHQDULR

XQFHUWDLQW\� (QWURS\ FDQ DOVR EH XVHG DV D PHDVXUH RI

V\VWHP XQFHUWDLQW\� ZKLFK LV GLUHFWO\ UHODWHG WR V\VWHP

SHUIRUPDQFH� ,W FDQ UHSUHVHQWV WKH XQFHUWDLQW\ LQ VHOHFWLQJ

WKH DSSURSULDWH FRQWURO IURP WKH VHW RI DOO DGPLVVLEOH

FRQWUROV >�@� (QWURS\ FDQ DOVR EH XVHG IRU UHSUHVHQWLQJ

SHUIRUPDQFH� H�J�� V\VWHP WUDFNLQJ HUURU DORQJ D SODQQHG

WUDMHFWRU\ LQ WKH V\VWHP VWDWH VSDFH�

:H GHILQH HQWURS\ DV IROORZV�

���
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��� &KDQQHO 6HQVLWLYLW\

&KDQQHO 6HQVLWLYLW\� &K6� LV GHILQHG DV WKH GLIIHUHQWLDO

FKDQJH RI WKH V\VWHP HQWURS\ ZKLFK UHVXOWV DIWHU D

GLIIHUHQWLDO FKDQJH LQ WKH FKDQQHO FDSDFLW\ RI WKH

LQIRUPDWLRQ GDWD OLQN EHWZHHQ D UHPRWH�XVHU DQG WKH 6\VWHP

8QGHU (YDOXDWLRQ � 68(� RU EHWZHHQ DQ H[WHUQDO DJHQW DQG

WKH 68(� KDV RFFXUUHG�

���

��� (QYLURQPHQW 6HQVLWLYLW\

(QYLURQPHQW 6HQVLWLYLW\� (Q6� LV GHILQHG DV WKH GLIIHUHQWLDO

FKDQJH RI WKH V\VWHP HQWURS\ ZKLFK UHVXOWV DIWHU D

GLIIHUHQWLDO FKDQJH LQ WKH HQYLURQPHQW HQWURS\� RU

XQFHUWDLQW\� KDV RFFXUUHG�

���

��� 6FHQDULR 6HQVLWLYLW\

6FHQDULR 6HQVLWLYLW\� 6F6� LV GHILQHG DV WKH GLIIHUHQWLDO

FKDQJH RI WKH V\VWHP HQWURS\ ZKLFK UHVXOWV DIWHU D

GLIIHUHQWLDO FKDQJH LQ WKH VFHQDULR HQWURS\� RU XQFHUWDLQW\�

KDV RFFXUUHG�
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��� ,QIRUPDWLRQ 6HQVLWLYLW\

,QIRUPDWLRQ 6HQVLWLYLW\� ,Q6� LV GHILQHG DV WKH GLIIHUHQWLDO

FKDQJH RI WKH V\VWHP HQWURS\ ZKLFK UHVXOWV DIWHU D

GLIIHUHQWLDO FKDQJH LQ WKH V\VWHP JOREDO DQG PLVVLRQ UHODWHG

H[WHUQDOO\ SURYLGHG LQIRUPDWLRQ� KDV RFFXUUHG� 7KH

LQIRUPDWLRQ LQFOXGHV WKH 0LVVLRQ 3ODQ DQG WKH UHODWHG 'DWD

%DVHV ZKLFK SURYLGHG WR WKH DXWRQRPRXV V\VWHP E\ WKH

UHPRWH XVHU� VXSHUYLVRU RU E\ DQ H[WHUQDO DJHQW� SULRU WR

PLVVLRQ H[HFXWLRQ� RU ZKLOH WKH PLVVLRQ LV H[HFXWHG�

���

��� $GDSWDWLRQ 5DWH 6HQVLWLYLW\

$GDSWDWLRQ 5DWH 6HQVLWLYLW\ � $56� LV GHILQHG DV WKH

GLIIHUHQWLDO FKDQJH RI WKH V\VWHP HQWURS\ UDWH ZKLFK UHVXOWV

DIWHU D GLIIHUHQWLDO FKDQJH LQ WKH HQWURS\ RI WKH VXEMHFW

HQWLW\� H�J�� HQYLURQPHQW RU VFHQDULR� RU XQFHUWDLQW\� KDV

RFFXUUHG� 6LPLODUO\� $GDSWDWLRQ 5DWH 6HQVLWLYLW\ FDQ EH

GHILQHG LQ UHODWLRQ ZLWK GLIIHUHQWLDO FKDQJHV RI FKDQQHO

FDSDFLW\ RU LQIRUPDWLRQ�
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0HWULFV IRU V\VWHP DXWRQRP\ KDV EHHQ GHILQHG DQG
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In Defense of the Additive Form for Evaluating the
Multidimensional Vector

Dr. Leonid M. Polyakov
Globe Institute of Technology

Leonid@globeinstitute.org

               ABSTRACT

The topic of this discussion is an artificial (not
a natural human) intelligence measurement. It
would be better to call it an evaluation rather

than a measurement. The Additive Evaluation
Method is the only real  method to make a
evaluation of the vector value.

KEYWORD: intelligence,
measurement, expert. additive.

ADDITIVE FORM.

Artificial Intelligence, like a human one, is
a composition of the different additive
abilities such as reasoning, learning,
decision-making, object recognition, and
so on. The multifunctional nature of
intelligence can be represented as a vector .

The intelligence measurement is not the
same as a multiobjective optimization of the
intelligence systems. There are many
different methods of optimization
(Preference Structures, Compromise
Approach, Lexicographic Ordering
Approach, Genetic Approach, Pareto
approach, etc.) [4,5, and other]. All of these
methods work with each function of the
intelligence separately and determine
preferences and a system’s rank, but not an
intelligence value. The additive function is
presented in the most of the research works
[2,3,6,7,9-14, and other].

The measurement is a process of assigning
numbers  to the objects or events in
accordance with certain rules of the system.
The number assignment is possible just on
the scalar scale. There are three types of
axioms related to a measurement process:
identity axioms, rank axioms, additivity
axioms. These axioms determine four scale
levels: scale of names, range scale, interval
scale and ratio scale.  The analyses of these
scales are done in [2]. Only additivity
axioms can be applied to the real

measurement. These axioms can be applied
just to the scalar scale, as it was mentioned
above. A vector doesn’t meet these
conditions. Just, the weighted-sum approach
and utility functions can be used in this case
[3,7] as the method of multivariable scales
aggregation and converts vector into a
sufficient scalar.

The last question is how to determine the
value of weight.  The most known and
usable method is an expert method, but
there are several analytical methods  to find
out the value of this function [2,6].

Opponents of these methods of the
aggregation function complain against the
application of a human expertise as a source
of information. They dispute an expert
ability to produce objective information.
Yes, a collective expertise has an element of
subjectivism but today we don’t have a
better way to measure a vector’s values to
make a comparison of two or more vectors’
values. Is this, a  wonderful  fact  in that we
use an expert’s intellectual ability in  the
intelligence measurement? Certainly not,
because the intelligence can be measured by
the scale of the intelligence. Only a human
being has the best sense of the value of the
intelligence functions. Each separate
intelligence function can be measured by
appropriate methods but, as an integrated
value, intelligence has to be presented as a
scalar.

There are many different methods to
measure each separate intellectual ability.
For example, the value of the ability to
learn can be presented as a    ratio of an



increment of intelligence to an increment of
information. The number of iterations, or
the number of rules and trials (trial and
error method), or the entropy method, etc
can determine the value of information. So,
the learning ability is:

                        L = d(I)/d(If).           (1)

The amount of new information available to
the different systems can change the
intelligence value of these systems.

A values of a separate intellectual abilities
(variables) don’t give any ideas about
artificial intelligence integrated value.
Aggregation of the separate variables can be
done on the base of the utility theory. The
utility of intelligent alternative can be
presented as [2]:

       n
UA=Σ Ui                          (2)
      i =1

                                      

where Ui is an utility of i-th basic
           variable,
           n is a number of variables.

From (2) [2], we can   get  the  quality index
of  j-th alternative (domain specific by design)
in nondimensional units

              n
    Qj  =  Σ  Wi (Fi )*( Fi/Fi max ) (3)
             i = 1

Where Wi (Fi) is a weight function of
            i-th variable (Fi).

A set of variables has to be named for
              each problem separately.

Usually  one  of  the  variables  is  an
investment  value  of  the  j-th      alternative
(Cj).  In this case, equation (4) can be
rewritten as:

    n - 1
Qj*(C max/ Wc)  = Σ    [ Wi (Fi)/Wc] *

    i = 1

Cmax *( Fi/Fimax )- Cj. (4)

This  equation  presents  the  evaluation of j-
th alternative measured in   cost units

(dollars).  Now  we can use  money as a real
universal scale  of  the measurement. Some
opponents  can  say,  “it   is  immoral”. A
measurement  is not a moral category!  Cj
can be added to the left and the right parts of
the equation  (4).   In this case we can get the
value of Qj*(C max/ Wc) presented in dollar
units. This value includes only intelligence
variables and can be called the intelligence
value of the j-th
alternative

                       n - 1
                   Ij= Σ   [ Wi (Fi)/Wc] *
                       i = 1

              Cmax *( Fi/Fimax ).        (5)

Where Wc is a weight function of
            variable Cmax.

This is the direct way to calculate profit
(political factors are included). It is one
more reason to use the Utility Method and
scalar scale. No other method permits us to
get an intelligence evaluation in dollar
units. Each time in the shopping center,
when we are buying something we use ours
preferences and convert a vector value into a
scalar value presented in the dollar units.

 The intelligence measurement is not a new
problem.  The famous IQ and WAIS-3 [8]
tests are the possible ways to make an
evaluation of the human intelligence. These
tests present an aggregated value of the
multifunctional intelligence and convert a
vector value into a scalar value.

The opponents to these testes pointed out to
the possible social problems bounded to
these methodic. In case of artificial
intelligence measurment this problem does
not make sense.

Conclusion.

The Additive Evaluation Method is the only
real method to make a  evaluation of the
vector value. It can’t be write off from the
tools of  intelligence value evaluation.
Artificial intelligence of the system should
be measured and presented as scalar.



This method is the only one, which can gives
financial evaluation of artificial intelligence
application.

Contemporary artificial intelligence systems
are design as a domain-oriented systems.
Only the expert can determine the
importance of each intellectual function with
regard to the certain domains.
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Machine Intelligence Ranking
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ABSTRACT
This talk addresses a number of issues which were
inspired by the draft of a document on Metric for
Intelligence of Constructed Systems. The
constructed systems here literally mean an
autonomous control system. It is important to note
the opinions expressed in this talk reflect the
thoughts of the author and they do not reflect on
any institution, organization or professional
society.
There are six issues being raised in this talk. The
first issue deals with the discussion on the role
NIST should play. The institution of NIST was
chartered to serve American citizens to improve
their well being and the noble goal of pursuing a
life of happiness. One of the most important tasks
is to measure, standardize, and rank the
engineering systems and the advancement of the
technology objectively. The autonomous
constructed systems were singled out with a high
profile to reflect their importance. Are there any
other man-made systems which are equally or
more important?
Second issue has to do with measuring
intelligence. We are measuring intelligence
because technology embraces intelligence giving
us a superior and high performance system. On the
other hand, it is not NIST's mission to do all that
because it is there! The fundamental issue,
however, is to serve the citizens better via
improved technology which requires intelligence.
The definition of intelligence, however, is no
simple matter, as well as the definition of serving
citizens. Both cover a wide spectrum of needs and
desirable things other than autonomous systems of
which intelligence so happen needed to be put in
the center of the stage.

The third issue to be raised is the definition of
"machine intelligence" and how to measure it?
Since the definition of human intelligence is
complex and difficult, the definition of machine
intelligence is even more difficult!
The fourth issue has to do with the performance
evaluation of engineering systems. This issue
deals with value judgement. The debate by the
citizens among all walks of life and society as a
whole must be carried out in order to establish
value judgement as a benchmark for measurement,
testing, and evaluations.
This brings us to the issue of testing and
measuring. The central issue is how are we to
conduct the machine intelligence test? It is not a
simple matter because we have not yet settled the
definition of machine intelligence!
Equally important is the issue of understanding the
crux of our present technology and forecasting of
future technology. The reason is due to the fact
that there is absolutely no unique way to realize a
high performance system. Here we are talking
about a federal institution to set the standard to
evaluate and rank a high performance system.
Generally speaking, the position this paper takes is
that some of the issues raised in white papers are
over simplified. Some of the long term frame
works have not been covered adequately. If one
believes in the basic assumptions, hypotheses set
by the white paper and willing to live with all the
constraints already being laid out, then this paper
has no validity. The feeling of this author is that
the constraints dealing with intelligent machines
are overly constrained and a liberation effort
hence is needed.



The main concerns are:  the basic charter of the
institution is unclear, the science on intelligence is
too complex, the need of application areas is too
complex, and the technologies available are too
uncertain to reach a consensus.
With these constraints, I must say that the white
paper is truly an outstanding document full of
creativity, imagination, and innovative ideas.
Congratulations to Alex Meystel and Jim Albus.





Survivability and Competence
as Measures of Intelligent Systems

Reid Simmons
Robotics Institute
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While the workshop is appropriately
named "Measuring the Performance of
Intelligent Systems", there may be come
confusion that the goal is actually about
measuring the intelligence of systems.
While measuring performance is a worthy,
albeit difficult goal, I believe that trying to
measure intelligence itself is misplaced.
To me, it seems pointless to debate
whether, for instance, playing chess
exhibits more "intelligence" than exploring
Mars, or whether using speech is
inherently more intelligent than doing
object recognition.  From both pragmatic
and philosophical viewpoints, the more
that we can make it clear that we are
interested in performance, rather than
intelligence, per se, the better off we will
be.

So, what criteria are to be used for
measuring the performance of intelligent
systems?  I think that the two most
important characteristics are survivability
and competence.  By survivability, I
mean the ability of a system to cope with
diversity in the environment, as well as
internal faults (hardware and software).
By competence, I mean the ability of a
system to successfully perform tasks.
Both survivability and competence can be
measured either empirically or formally.
Empirically,  survivability can be
measured by carefully controlling
environmental inputs and by modifying the
internal state of the system (such as by
deliberately causing hardware faults).
Formally, with the right model one can

quantify the range of environmental
conditions and internal states that can be
handled successfully.  Similarly, one can
measure competence either empirically or
formally by controlling for the range of
tasks and the environments under which
those tasks are to be performed.

This, of course, begs the question as to
how to set up the experiments in an
unbiased and controlled fashion, and how
to model tasks and environments so that
formal evaluations are possible.
Unfortunately, I do not have good
answers for those questions, at this time
(although we are working on it!).  The
problem is that most intelligent systems
exhibit chaotic behavior - small deviations
in input conditions lead to wide deviation
of behavior (of course, many intelligent
systems are also chaotic in the colloquial
sense, but that is another matter...).  Thus,
it is very difficult to set up "the same"
conditions to test different systems.  One
can never be sure if the results are due to
actual differences between the systems
themselves, or due to small differences in
the environments.  While simulation can
be used to perform standardized
experiments, simulators have the
disadvantage that they tend to be rather
simple models of reality, and so may not
capture the essence of what makes
survivability and competence difficult.

What about things like robot competitions
and Turing tests?  I am all for them, but
not as quantitative measures of



performance, since they suffer from the
problem of variability, as described
above.  The reason that they are valuable
is that they come close to standardizing
tasks and environments in realistic
settings, and so can be used by
developers of intelligent systems to gauge
progress, in qualitative ways, against the
state of the art.  While it is dangerous to
use the results of such competitions to
conclude anything about one system vs.
another (especially one technology vs.
another, such as neural nets vs. expert
systems), competitions are useful as a
type of "bread-boarding" exercise.

Finally, an important aspect of intelligence
is adaptability.  The question is whether
adaptability should (or can) be measured
independently from survivability and
competence.  I would argue that
adaptability is merely one way of
increasing a system's survivability and

competence, and thus should not be
considered independently.  While it may
turn out to be true that adaptable systems
are generally more survivable and
competent, it seems clear to me that this is
a hypothesis that needs to be
demonstrated empirically, or proved
formally.  In the absence of such proof, it
seems to make little sense to measure
adaptability in isolation.

In summary, survivability and competence
are two critically important characteristics
of intelligent systems.  While it is possible
to devise ways of measuring both, in a
rigorous fashion, it is difficult due to the
fact that autonomous systems interacting
with complex environments tend to be
chaotic.  But, that fact should not lessen
our resolve to try and measure
performance - it only serves to make us
aware of the limitations and difficulties of
the enterprise.



Two measures for the "intelligence" of human-interactive
robots in contests and in the real world: expressiveness and

perceptiveness

Illah R. Nourbakhsh
             The Robotics Institute
         Carnegie Mellon University

Practical measures of intelligence are generally predicated on
a social-anthropocentric view  of intelligence. This is hardly
surprising, but is undesirable because it results in intelligence
testing procedures that are uninformative when the subject is
not human.  For example, the classical Turing Test measures
machine intelligence using the yardstick of human social
dialogue, in written form, as its gold standard. The problem is
that such methodology is implicitly pass fail. Rather than
providing a relative measure for machines that are clearly
inferior to humans at social human interaction, this test simply
fails all such machines until and unless some superior machine
simply passes. In airness, it is possible to mitigate this to a
small degree by narrowing the content area of the test.

Nevertheless, the Turing Test as applied to the mobile robot
system suffers generally the same fate. One can imagine, for
instance, a robot Turing Test in which the human teleoperated
robot is compared in performance to an autonomous robot in
tasks such as navigation, manipulation and robot-human
interaction. But the robot will continue to suffer because its
raw percepts and raw effectors are not comparable to that of a
human. The solution, to force the teleoperating human to use
the same percepts as the robot itself uses, results in a robot
that whether teleoperated or not is disappointingly
unintelligent even when it successfully passes such a robot
Turing Test.  The problem, then, is that a robot's potential for
interaction imposes an upper bound on its potential for
intelligence.

Based on this premise, I will propose in my talk that the form
of intelligence about which we care most in the case of
autonomous robots is interaction.

I will present a methodology for measuring the potential of a
robot to engage in rich interaction, thereby establishing a
behavioral and analytical way of measuring intelligence
without reverting to a direct anthropocentric pass fail test.  I
will define the concepts of expressiveness and perceptiveness,
which together place both upper bounds and lower bounds on
interactivity and thereby intelligence. Expressiveness is a
measure of the output richness of an electromechanical
system. One can quantify expressiveness in terms of the
average effectory branching factor of an agent in its
observable output space.

Perceptiveness is a measure of the fidelity of an
electromechanical system's effective mapping from
environmental change to output. This too can be quantified by
computing the set of possible output trajectories of an agent in
its perceptual workspace.  These two measures prove to be
particularly useful because they contain no bias with respect to
behavior-based and model-based robot architectures.   After
defining expressiveness and perceptiveness, I provide some
quantitative results comparing the expressiveness and
perceptiveness of a simple unicellular organism, the
dinoflagellate, to that of several popular mobile robots. These
quantitative results demonstrate that from the perspective of
interactivity mobile robots have a long way to go before
challenging human intelligence.
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